Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This work presents a novel, to the best of our knowledge, cross correlation technique for determining the laser heating-induced Raman shift laser power coefficientψrequired for energy transport state-resolved Raman (ET-Raman) methods. The cross correlation method determines the measure of similarity between the experimental intensity data and a varying test Gaussian signal. By circumventing the errors inherent in any curve fittings, the cross correlation method quickly and accurately determines the location where the test Gaussian signal peak is most like the Raman peak, thereby revealing the peak location and ultimately the value ofψ. This method improves the reliability of optothermal Raman-based methods for micro/nanoscale thermal measurements and offers a robust approach to data processing through a global treatment of Raman spectra.more » « less
-
In the last two decades, tremendous research has been conducted on the discovery, design and synthesis, characterization, and applications of two-dimensional (2D) materials. Thermal conductivity and interface thermal conductance/resistance of 2D materials are two critical properties in their applications. Raman spectroscopy, which measures the inelastic scattering of photons by optical phonons, can distinct a 2D material's temperature from its surrounding materials', featuring unprecedented spatial resolution (down to the atomic level). Raman-based thermometry has been used tremendously for characterizing the thermal conductivity of 2D materials (suspended or supported) and interface thermal conductance/resistance. Very large data deviations have been observed in literature, partly due to physical phenomena and factors not considered in measurements. Here, we provide a critical review, analysis, and perspectives about a broad spectrum of physical problems faced in Raman-based thermal characterization of 2D materials, namely interface separation, localized stress due to thermal expansion mismatch, optical interference, conjugated phonon, and hot carrier transport, optical–acoustic phonon thermal nonequilibrium, and radiative electron–hole recombination in monolayer 2D materials. Neglect of these problems will lead to a physically unreasonable understanding of phonon transport and interface energy coupling. In-depth discussions are also provided on the energy transport state-resolved Raman (ET-Raman) technique to overcome these problems and on future research challenges and needs.more » « less
-
null (Ed.)Although 2D materials have been widely studied for more than a decade, very few studies have been reported on the in-plane structure domain (STD) size even though such a physical property is critical in determining the charge carrier and energy carrier transport. Grazing incidence X-ray diffraction (XRD) can be used for studying the in-plane structure of very thin samples, but it becomes more challenging to study few-layer 2D materials. In this work the nanosecond energy transport state-resolved Raman (nET-Raman) technique is applied to resolve this key problem by directly measuring the thermal reffusivity of 2D materials and determining the residual value at the 0 K-limit. Such a residual value is determined by low-momentum phonon scattering and can be directly used to characterize the in-plane STD size of 2D materials. Three suspended MoSe 2 (15, 50 and 62 nm thick) samples are measured using nET-Raman from room temperature down to 77 K. Based on low-momentum phonon scattering, the STD size is determined to be 58.7 nm and 84.5 nm for 50 nm and 62 nm thick samples, respectively. For comparison, the in-plane structure of bulk MoSe 2 that is used to prepare the measured nm-thick samples is characterized using XRD. It uncovers crystallite sizes of 64.8 nm in the (100) direction and 121 nm in the (010) direction. The STD size determined by our low momentum phonon scattering is close to the crystallite size determined by XRD, but still shows differences. The STD size by low-momentum phonon scattering is more affected by the crystallite sizes in all in-plane directions rather than that by XRD that is for a specific crystallographic orientation. Their close values demonstrate that during nanosheet preparation (peeling and transfer), the in-plane structure experiences very little damage.more » « less
-
As they hold extraordinary mechanical and physical properties, two-dimensional (2D) atomic layer materials, including graphene, transition metal dichalcogenides, and MXenes, have attracted a great deal of attention. The characterization of energy and charge transport in these materials is particularly crucial for their applications. As noncontact methods, Raman-based techniques are widely used in exploring the energy and charge transport in 2D materials. In this review, we explain the principle of Raman-based thermometry in detail. We critically review different Raman-based techniques, which include steady state Raman, time-domain differential Raman, frequency-resolved Raman, and energy transport state-resolved Raman techniques constructed in the frequency domain, space domain, and time domain. Detailed outlooks are provided about Raman-based energy and charge transport in 2D materials and issues that need special attention.more » « less
-
null (Ed.)Liquid–solid interface energy transport has been a long-term research topic. Past research mostly focused on theoretical studies while there are only a handful of experimental reports because of the extreme challenges faced in measuring such interfaces. Here, by constructing nanosecond energy transport state-resolved Raman spectroscopy (nET-Raman), we characterize thermal conductance across a liquid–solid interface: water–WS 2 nm film. In the studied system, one side of a nm-thick WS 2 film is in contact with water and the other side is isolated. WS 2 samples are irradiated with 532 nm wavelength lasers and their temperature evolution is monitored by tracking the Raman shift variation in the E 2g mode at several laser powers. Steady and transient heating states are created using continuous wave and nanosecond pulsed lasers, respectively. We find that the thermal conductance between water and WS 2 is in the range of 2.5–11.8 MW m −2 K −1 for three measured samples (22, 33, and 88 nm thick). This is in agreement with molecular dynamics simulation results and previous experimental work. The slight differences are attributed mostly to the solid–liquid interaction at the boundary and the surface energies of different solid materials. Our detailed analysis confirms that nET-Raman is very robust in characterizing such interface thermal conductance. It completely eliminates the need for laser power absorption and Raman temperature coefficients, and is insensitive to the large uncertainties in 2D material properties input.more » « less
-
Abstract Laser-assisted manufacturing (LAM) is a technique that performs machining of materials using a laser heating process. During the process, temperatures can rise above over 2000 °C. As a result, it is crucial to explore the thermal behavior of materials under such high temperatures to understand the physics behind LAM and provide feedback for manufacturing optimization. Raman spectroscopy, which is widely used for structure characterization, can provide a novel way to measure temperature during LAM. In this review, we discuss the mechanism of Raman-based temperature probing, its calibration, and sources of uncertainty/error, and how to control them. We critically review the Raman-based temperature measurement considering the spatial resolution under near-field optical heating and surface structure-induced asymmetries. As another critical aspect of Raman-based temperature measurement, temporal resolution is also reviewed to cover various ways of realizing ultrafast thermal probing. We conclude with a detailed outlook on Raman-based temperature probing in LAM and issues that need special attention.more » « less
-
Abstract Raman spectroscopy has been widely used to measure thermophysical properties of 2D materials. The local intense photon heating induces strong thermal nonequilibrium between optical and acoustic phonons. Both first principle calculations and recent indirect Raman measurements prove this phenomenon. To date, no direct measurement of the thermal nonequilibrium between optical and acoustic phonons has been reported. Here, this physical phenomenon is directly characterized for the first time through a novel approach combining both electrothermal and optothermal techniques. While the optical phonon temperature is determined from Raman wavenumber, the acoustic phonon temperature is precisely determined using high‐precision thermal conductivity and laser power absorption that are measured with negligible nonequilibrium among energy carriers. For graphene paper, the energy coupling factor between in‐plane optical and overall acoustic phonons is found at (1.59–3.10) × 1015W m−3K−1, agreeing well with the quantum mechanical modeling result of 4.1 × 1015W m−3K−1. Under ≈1 µm diameter laser heating, the optical phonon temperature rise is over 80% higher than that of the acoustic phonons. This observation points out the importance of subtracting optical–acoustic phonon thermal nonequilibrium in Raman‐based thermal characterization.more » « less
An official website of the United States government
